The signless Laplacian spectral radius of bicyclic graphs with a given girth

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The signless Laplacian spectral radius of bicyclic graphs with a given girth

Let B(n, g) be the class of bicyclic graphs on n vertices with girth g. In this paper, the graphs in B(n, g) with the largest signless Laplacian spectral radius are characterized.

متن کامل

The Signless Laplacian Spectral Radius of Unicyclic and Bicyclic Graphs with a Given Girth

Let U(n, g) and B(n, g) be the set of unicyclic graphs and bicyclic graphs on n vertices with girth g, respectively. Let B1(n, g) be the subclass of B(n, g) consisting of all bicyclic graphs with two edge-disjoint cycles and B2(n, g) = B(n, g)\B1(n, g). This paper determines the unique graph with the maximal signless Laplacian spectral radius among all graphs in U(n, g) and B(n, g), respectivel...

متن کامل

Ela the Signless Laplacian Spectral Radius of Bicyclic Graphs with a given Girth

Let B(n, g) be the class of bicyclic graphs on n vertices with girth g. In this paper, the graphs in B(n, g) with the largest signless Laplacian spectral radius are characterized.

متن کامل

The Signless Laplacian or Adjacency Spectral Radius of Bicyclic Graphs with Given Number of Cut Edges

LetB(n, r) be the set of all bicyclic graphs with n vertices and r cut edges. In this paper we determine the unique graph with maximal adjacency spectral radius or signless Laplacian spectral radius among all graphs in B(n, r).

متن کامل

On the Signless Laplacian Spectral Radius of Bicyclic Graphs with Perfect Matchings

The graph with the largest signless Laplacian spectral radius among all bicyclic graphs with perfect matchings is determined.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Linear Algebra

سال: 2011

ISSN: 1081-3810

DOI: 10.13001/1081-3810.1444